skip to main content


Search for: All records

Creators/Authors contains: "Stevens, Michael L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In this work, we investigate how the complex structure found in solar wind proton velocity distribution functions (VDFs), rather than the commonly assumed two-component bi-Maxwellian structure, affects the onset and evolution of parallel-propagating microinstabilities. We use theArbitrary Linear Plasma Solver, a numerical dispersion solver, to find the real frequencies and growth/damping rates of the Alfvén modes calculated for proton VDFs extracted from Wind spacecraft observations of the solar wind. We compare this wave behavior to that obtained by applying the same procedure to core-and-beam bi-Maxwellian fits of the Wind proton VDFs. We find several significant differences in the plasma waves obtained for the extracted data and bi-Maxwellian fits, including a strong dependence of the growth/damping rate on the shape of the VDF. By applying the quasilinear diffusion operator to these VDFs, we pinpoint resonantly interacting regions in velocity space where differences in VDF structure significantly affect the wave growth and damping rates. This demonstration of the sensitive dependence of Alfvén mode behavior on VDF structure may explain why the Alfvén ion-cyclotron instability thresholds predicted by linear theory for bi-Maxwellian models of solar wind proton background VDFs do not entirely constrain spacecraft observations of solar wind proton VDFs, such as those made by the Wind spacecraft.

     
    more » « less
  2. Streamer-blowout coronal mass ejections (SBO-CMEs) are the dominant CME population during solar minimum. Although they are typically slow and lack clear low-coronal signatures, they can cause geomagnetic storms. With the aid of extrapolated coronal fields and remote observations of the off-limb low corona, we study the initiation of an SBO-CME preceded by consecutive CME eruptions consistent with a multi-stage sympathetic breakout scenario. From inner-heliospheric Parker Solar Probe (PSP) observations, it is evident that the SBO-CME is interacting with the heliospheric magnetic field and plasma sheet structures draped about the CME flux rope. We estimate that 18 ± 11% of the CME’s azimuthal magnetic flux has been eroded through magnetic reconnection and that this erosion began after a heliospheric distance of ∼0.35 AU from the Sun was reached. This observational study has important implications for understanding the initiation of SBO-CMEs and their interaction with the heliospheric surroundings. 
    more » « less
  3. Abstract

    Stealth coronal mass ejections (CMEs) are eruptions from the Sun that are not associated with appreciable low-coronal signatures. Because they often cannot be linked to a well-defined source region on the Sun, analysis of their initial magnetic configuration and eruption dynamics is particularly problematic. In this article, we address this issue by undertaking the first attempt at predicting the magnetic fields of a stealth CME that erupted in 2020 June from the Earth-facing Sun. We estimate its source region with the aid of off-limb observations from a secondary viewpoint and photospheric magnetic field extrapolations. We then employ the Open Solar Physics Rapid Ensemble Information modeling suite to evaluate its early evolution and forward model its magnetic fields up to Parker Solar Probe, which detected the CME in situ at a heliocentric distance of 0.5 au. We compare our hindcast prediction with in situ measurements and a set of flux-rope reconstructions, obtaining encouraging agreement on arrival time, spacecraft-crossing location, and magnetic field profiles. This work represents a first step toward reliable understanding and forecasting of the magnetic configuration of stealth CMEs and slow streamer-blowout events.

     
    more » « less
  4. Abstract This letter exploits the radial alignment between the Parker Solar Probe and BepiColombo in late 2022 February, when both spacecraft were within Mercury’s orbit. This allows the study of the turbulent evolution, namely, the change in spectral and intermittency properties, of the same plasma parcel during its expansion from 0.11 to 0.33 au, a still unexplored region. The observational analysis of the solar wind turbulent features at the two different evolution stages is complemented by a theoretical description based on the turbulence transport model equations for nearly incompressible magnetohydrodynamics. The results provide strong evidence that the solar wind turbulence already undergoes significant evolution at distances less than 0.3 au from the Sun, which can be satisfactorily explained as due to evolving slab fluctuations. This work represents a step forward in understanding the processes that control the transition from weak to strong turbulence in the solar wind and in properly modeling the heliosphere. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
  7. null (Ed.)
  8. null (Ed.)
  9. This white paper is on the HMCS Firefly mission concept study. Firefly focuses on the global structure and dynamics of the Sun's interior, the generation of solar magnetic fields, the deciphering of the solar cycle, the conditions leading to the explosive activity, and the structure and dynamics of the corona as it drives the heliosphere. 
    more » « less
    Free, publicly-accessible full text available August 23, 2024